M.Sc. Chemistry Syllabus 2023

MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL - 624101

DEPARTMENT OF CHEMISTRY

M.Sc. Chemistry

Curriculum Framework, Syllabus, and Regulations

(Based on TANSCHE Syllabus under Choice Based Credit System - CBCS)

(For the candidates to be admitted from the Academic Year 2023-24)

SYLLABUS FRAMEWWORK FOR M. Sc CHEMISTRY (As per TANSCHE from 2023-24)

	SEMESTER I						
S. No	Course Components	Course Code	Credits	Hours per week			
1	Core-I	P23CHT11	Organic Chemistry- I	5	7		
2	Core-II	P23CHT12	Inorganic Chemistry- I	5	7		
3	Core-III	P23CHP11	Organic Chemistry Practical	4	6		
4		P23CHE1A/ P23CHE1B//	Pharmaceutical Chemistry/Nanomaterials and Nanotechnology	3	5(4L+1T)		
5	Elective II (Generic)	P23WSG11	Women Empowerment	3	5(4L+1T)		
			Total	20	30		

			SEMESTER II		
S. No		Course Code		Credit	Hours per Week
1	Core -IV	P23CHT23	Organic Chemistry- II	5	6
2	Core -V	P23CHT24	Physical Chemistry-I	5	6
3	Core -VI	P23CHP22	Inorganic Chemistry Practical	4	6
	Elective III(Discipline Specific)	P23CHE2A P23CHE2B /	Medicinal Chemistry/Material Chemistry	3	4
5	Elective IV (Generic)	P23CSG22	Cyber security	3	4
			Chemistry in Everyday Life/ Agricultural Chemistry	2	4
			Total	22	30

1. About the Department

The Department of Chemistry, Mother Teresa Women's University, Kodaikanal was established in 2006 and is motivated to provide a complete learning opportunity and quality education encompassing developments in frontier research areas in chemistry. We aim to strongly motivate our students for research and provide them adequate training in synthesis, characterization, application studies and instrumentation and equip students to meet the global requisites for employment. The Department offers M. Sc., M. Phil., and Ph. D programs.The Department is specialized in research areas such as Coordination Chemistry, X-ray- crystallography, Medicinal Chemistry and Bioinorganic Chemistry.

2. About the Programme

The M. Sc. Degree Programme in Chemistry offered by Mother Teresa Women's University, Kodaikanal aims at providing advanced and in-depth knowledge in various basic and applied fields of Chemistry. The core courses equip the learners with experimental and analytical skills in addition to sound theoretical knowledge in various aspects of Chemistry required for employability and research. The electives add additional knowledge -about applied aspects of Chemistry and implications in both Academia and industry. The non-major electives introduce integration among various inter-disciplinary courses. The skill based courses equip the learners with job and research oriented computer skills.

3. Programme Educational Objectives (PEOs))

- PEO1: To provide a sound knowledge in Chemistry with scientific reasoning and analytical problem solving skills
- PEO2: To inculcate scientific temper and research attitude and provide adequate training in Synthesis, Characterization and Instrumentation

PEO3: To equip the students with skills for employability & entrepreneurship

PEO4: To enable the learners to apply the knowledge acquired in frontier areas of chemistry for new research and technology and solve the problems of the society related to Environment & health

4. Eligibility

B. Sc. Chemistry degree with Mathematics/ Physics/ Botany/Zoology as one of the Allied subjects

5. General Guidelines for PG Programme

- **a. Duration:** The programme shall extend through a period of 4 consecutive semesters and the duration of a semester shall normally be 90 days or 450 hours. Examinations shall be conducted at the end of each semester for the respective subjects.
- b. Medium of Instruction: English
- c. Question paper pattern for External examination for Core and Elective papers: Theory Paper (Bloom's Taxonomy based)

Intended Learning Skills	Maximum 75 Marks Passing Minimum: 50% Duration: Three Hours
Memory Recall/Example/ Counter Example / Knowledge	Part-A (10x2=20Marks) Answer ALL questions Each Question carries 2 marks
about the Concepts/Understanding	Two questions from each Unit
	Question 1 toQuestion10
	Part–B (5x5=25Marks) Answer ALL questions Each question carries 5 Marks
Descriptions/Application (problems)	Either - or Type Both parts of each question from the same Unit
	Question 11 (a) or 11(b) to Question 15(a) or 15(b)
	Part-C (3x 10 = 30 Marks) Answer any THREE questions Each question carries 10 Marks
Analysis/Synthesis / Evaluation	There shall be FIVE questions covering all the five units
	Question 16 to Question 20

*Minimum credits required to pass: 91

Project Report

A student should select a topic for the Project Work at the end of the third semester itself and submit the Project Report at the end of the fourth semester. The Project Report shall not exceed 75 typed pages in Times New Roman font with 1.5 line space.

• Project Evaluation

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination. The Project Work carries 100 marks (Internal: 25 Marks; External (Viva): 75 Marks).

6. Conversion of Marks to Grade Points and Letter Grade(Performance in a Course/ Paper)

a Course/ raper)				
Range of	Grade Points	Letter Grade	Description	
Marks				
90 - 100	9.0 - 10.0	0	Outstanding	
80-89	8.0 - 8.9	D+	Excellent	
75-79	7.5 – 7.9	D	Distinction	
70-74	7.0 - 7.4	A+	Very Good	
60-69	6.0 - 6.9	А	Good	
50-59	5.0 - 5.9	В	Average	
40-49	4.0 - 4.9	С	Satisfactory	
00-39	0.0	U	Re-appear	
ABSENT	0.0	AAA	ABSENT	

7. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students with 71% to 74% of attendance must apply for condonation in the Prescribed Form with prescribed fee. Students with 65% to 70% of attendance mustapply for condonation in the Prescribed Form with the prescribed fee along with the Medical Certificate. Students with attendance lesser than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, Principal and the Registrar of the University.

8. Maternity Leave

The student who avails maternity leave may be considered to appear for the examination with the approval of Staff i/c, Head of the Department, Controller of Examination and the Registrar.

9. Any Other Information

In addition to the above mentioned regulations, any other common regulations pertaining to the UG Programmes are also applicable for this Programme.

Programme Outcomes (POs)

On completion of the Programme the learners will

- 1. Understand and appreciate the importance of Chemistry as a central science by the knowledge of its diverse applications.
- 2. Have sound knowledge of the fundamental and advanced concepts of applications of chemical and scientific theories.
- 3. Acquire experimental skills required for employment in chemical and pharmaceutical industry.
- 4. Develop analytical and problem-solving skills
- 5. Acquire the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- 6. Identify the major problems of the society and environment for which Chemistry has offered and can provide solutions and get motivated to further work on it by pursuing research with social responsibility.

Programme Specific Outcomes (PSOs)

On completion of the M.Sc. Chemistry program, the students will be able to:

PSO1: Demonstrate comprehensive knowledge and understanding of both theoretical and experimental /applied chemistry including specialized areas of Organic

Chemistry, Inorganic Chemistry, Physical Chemistry, analytical Chemistry, Medicinal Chemistry, Environmental Chemistry, Nano Chemistry and Elective subjects.

PSO2: Use advanced instruments and related for in-depth characterization of materials/ Chemical Analysis and separation technology with the help of theoretical knowledge.

- PSO3: Understand the importance of Chemistry in societal and environmental contexts for sustainable development
- PSO4: Utilize the principles of scientific enquiry and analytical thinking while solving problems and making decisions
- PSO5: Open up new methods for environmental pollution & apply green/sustainable chemistry approach towards planning and execution of research in frontier areas of chemical sciences
- PSO6: Deduce the structure of compounds using various characterization techniques
- PSO7: Analyze & appreciate the different types polymers, supramolecular materials, Naturally available chemicals and their synthetic congeners
- PSO8: Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories

Title of the Course	ORGANI	C CHEMIST	RY						
Paper No.	Core I								
Category	Core	Year	Ι	Credits	5	Course	P23CHT1		
		Semester	Ι	1		Code			
Instructional	Lecture	Tutorial	La	b Practice		Total			
hours per week	6	1	-			7			
Prerequisites	Basic con	cepts of organi	c cher	nistry					
Objectives of	Busic conc		e ener	liisti y					
the course	 To understand the concept of aromaticity To understand the feasibility and the mechanism of various organic reactions. To comprehend the techniques in the determination of reaction mechanisms. To understand the concept of stereochemistry involved in organic compounds. To correlate and appreciate the differences involved in the various types of organic reaction mechanisms. 								
	 nitrenes Generation, stability and reactivity Aromatic character: Six-, five-, seven-, and eight- membered rings - Other systems with aromatic sextets – Huckel's theory of aromaticity, concept of homoaromaticity and antiaromaticity, Electron occupancy in MO's and aromaticity - NMR concept of aromaticity and antiaromaticity, systems with 2,4,8 and 10 electrons, systems with more than 10 electrons, alternant and non-alternant hydrocarbons (azulene type). Bonding properties of systems with (4n+2) pi-pi electrons and 4npi electrons, Heteroaromatic molecules, Annulenes, heteroannulenes, syndones and fullerenes. Craig's rule, Hammond's postulate. UNIT-II:Aromatic and Aliphatic Electrophilic Substitution: Aromatic electrophilic substitution: Orientation and reactivity of di- and polysubstituted phenol, nitrobenzene and halobenzene. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; 								
	Sulphur electrophiles: sulphonation; Halogen electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions. Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1- Mechanism and evidences. UNIT-III: Aromatic and Aliphatic Nucleophilic Substitution: Aromatic								

	nucleophilic substitution: Mechanisms - S_NAr , S_N1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attacking nucleophile. Reactions: Oxygen and Sulphur-nucleophiles, Bucherer and Rosenmund reactions, Sommelet- Hauser and Smiles
	rearrangements. S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. S_N1 , S_N2 , S_Ni , and S_E1 mechanism and evidences.
	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and
	diastereotopic atoms, groups, faces. Configurations of allenes, spiranes, biphenyls, binaphthyls, and cyclophanic compounds, exo-cyclic, alkylidene-cycloalkanes. Topicity and prostereoisomerism. Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and
	stereospecific synthesis.
	UNIT-V: Rearrangements: Rearrangements to electron deficient carbon: Pinacol-pinacolone Wagner-Meerwein, , Baker-Venkataraman, Benzilic
	acid and Wolff rearrangements.Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann Rearrangements
	to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements.Fries and Photo Fries
	rearrangement.Intramolecular rearrangements – Claisen, Cope, oxy-Cope Benzidine rearrangements.
Extended Professional Component (is	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
a part of internal	(To be discussed during the Tutorial hours)
component only, Not to be	
included in the external examination	
question paper)	
Skills acquired from this	Knowledge, Problem solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferable skills.
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition,
Text	John-Wiley and Sons.2001. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New

Page 8

	Age International Publishers, 2015.							
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.							
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,							
	Oxford University Press, 2014.							
Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A							
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.							
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.							
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.							
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw							
	Hill, 2000.							
	5. I. L. Finar, Organic chemistry, Vol-1&2, 6 th edition, Pearson							
	Education Asia, 2004.							
Website and	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u>							
e-learning	chemistry/organic							
source	2. <u>https://www.organic-chemistry.org/</u>							
Course Learnin	g Outcomes (for Mapping with POs and PSOs)							
Students will be								
	the basic principles of organic chemistry.							
CLO2: To unde	erstand the formation and detection of reaction intermediates of organic							
reactions.								
	lict the reaction mechanism of organic reactions and stereochemistry of							
organic compour	organic compounds.							
CLO4: To apply the principles of kinetic and non-kinetic methods to determine the								
	mechanism of reactions.							
	gn and synthesize new organic compounds by correlating the							
stereochemistryo	f organic compounds.							
	CO-PO Mapping (Course Articulation Matrix)							

		CO	-PO Ma	ipping (Course	Articul	ation M	atrix)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the Course	INORGA	NIC CHE	MIST	FRY-I			
Paper No.	Core II						
Category	Core	Year	Ι	Credits	5	Course	P23CHT12
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	6	1	-			7	
Prerequisites	Basic cor	ncepts of In	orga	nic Chemi	istry		
Objectives of the	To under	stand the co	oncep	ots of bond	ding	and identify th	e structure and
course	bonding of	of simple mo	olecu	les			
	To gain	fundamenta	l kn	owledge o	on th	e structural as	spects of ionic
	crystals.			-			-
		rstand the	vario	ous types	of	solid-state pac	king, types of
		forces, and		• •		1	0, 11
	To gain	knowledge	on	the stru	ctura	l properties o	of main group
	compoun	ds and struc	tures				0 1
Course Outline	UNIT-I:	Covalent B	ondi	ng			
	V.B. approach to bonding-Hitler-London, Pauling and Slater refinements, Concept of hybridization and structure of molecules, VSEPR theory shapes of molecules. M.O. approach to covalent bonding – symmetry and overlap of atomic orbitals – symmetry of molecular orbitals – sigma, pi and delta bondings – energy levels in homo and hetero nuclear diatomic systems – bond length, bond order and bond energy, Application to small molecules such as BeCl ₂ , BCl ₃						

	and CCl ₄ , SF ₄ , ionic character in a covalent bond. The concept of multicentre bonding.
	UNIT-II: Solid state-Structure: Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Lattice energy – Born-Lande equation - Kapustinski equation, Madelung constant. Structural features of the crystal systems: Rock salt, zinc blende & wurtzite, fluorite and anti-fluorite, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures-examples.
	UNIT-III: Metallic Bonding and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Superconductivity, Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations, Plane defects
	UNIT-IV: Structure of main group compounds
	Chemistry of boron – borane, higher boranes- structural features of closo, nido, arachano and klado; carboranes, borazines and boron nitrides. Wade's rule to predict the structure of borane cluster; main group clusters –zintl ions and mno rule. Chemistry of silicon – silanes, higher silanes, multiple bonded systems, silicon nitrides, siloxanes. P-N compounds, cyclophosphazenes and cyclophosphazenes. S-N compounds – S_4N_4 , $(SN)_x$.
	UNIT-V: Interhalogens and Polymeric Inorganic Compounds
	Pseudo halogens; , Structure and bonding in ClF_3 , BrF_3 , BrF_5 , IF_5 , IF_7 etc . Isopoly and heteropoly acids – Structure and bonding of 6- and 12-isopoly and heteropoly anions. Structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three dimensional silicates – Bonding in Noble gas compounds – $XeCl_2$, XeF_4 , $XeOF_4$, XeF_6 .
Extended Professional Component (is a part of internal	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)

Page 11

component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

CO1: Predict the geometry of main group compounds and clusters.

- **CO2**: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.
- **CO3**: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5:To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 – Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	ORGANIC CHEMISTRY PRACTICAL							
Course								
Paper No.	Core III							
Category	Core	Year	Ι	Credits	4	Course	P23CHP11	
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lab) Practice		Total		
hours per week	-	1	5 6					
Prerequisites	Basic concepts of organic chemistry							
Objectives of the	To under	stand the	conc	ept of se	para	tion, qualitati	ive analysis and	
course	preparatio	on of organi	c con	npounds.				
	To develo	op analytica	al ski	ill in the	hanc	lling of chem	ical reagents for	
		n of binary a				U U	U	
	To analy	ze the sep	parate	ed organi	c co	omponents sy	stematically and	
	derivatize	them suital	bly.					
	To constr	ruct suitable	e exp	erimental	setu	p for the org	anic preparations	
	involving	two stages.						

	To experiment different purification and drying techniques for the									
	compound processing.									
Course Outline	UNIT-I:Separation and analysis:									
	A. Two component mixtures.									
	B. Three component mixtures.									
	UNIT-II: Estimations: (any five)									
	a) Estimation of Phenol (bromination)									
	b) Estimation of Aniline (bromination)									
	c) Estimation of Ethyl methyl ketone (iodimetry)									
	d) Estimation of Glucose (redox)									
	e) Estimation of Ascorbic acid (iodimetry)									
	f) Estimation of Aromatic nitro groups (reduction)									
	g) Estimation of Glycine (acidimetry)									
	h) Estimation of Formalin (iodimetry)									
	i) Estimation of Acetyl group in ester (alkalimetry)									
	j) Estimation of Hydroxyl group (acetylation)									
	k) Estimation of Amino group (acetylation)									
	UNIT-III: Two stage preparations: (any four)									
	a) <i>p</i> -Bromoacetanilide from aniline									
	b) <i>p</i> -Nitroaniline from acetanilide									
	c) 1,3,5-Tribromobenzene from aniline									
	d) Acetyl salicyclic acid from methyl salicylate									
	e) Benzilic acid from benzoin									
	f) <i>m</i> -Nitroaniline from nitrobenzene									
	g) <i>m</i> -Nitrobenzoic acid from methyl benzoate									
Extended	Questions related to the above topics, from various competitive									
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others									
Component (is a	to be solved									
part of internal	(To be discussed during the Tutorial hours)									
component only,										
Not to be included										
in the external										
examination										
question paper)										
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional									
from this course	Competency, Professional Communication and Transferable skills.									
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition									
Text	(Students Edition), John Wiley & Sons Ltd., 2014.									
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,									
	Himalaya Publishing House, 2001.									
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th									
	Edition, CRC Press, 2012.									
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and									
	Models in Inorganic Chemistry, 3rd Ed, 1994.									

	 R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source Course Learning (<u>chemistry-fall-2018/video_galleries/lecture-videos/</u> Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	CO-FO Wapping (Course Articulation Watrix)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO 1	S	S	S	S	Μ	S	S	S	S	Μ		
CO 2	Μ	S	S	S	S	Μ	S	S	S	S		
CO 3	S	S	М	S	S	S	S	Μ	S	S		
CO 4	Μ	S	S	S	S	Μ	S	S	S	S		
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S		

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

itle of the Course	PHARM	ACEUTIC	AL C	CHEMIST	'RY		
Paper No.	Elective	[
Category	Elective	Year	Ι	Credits	3	Course	P23CHE1A
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lat	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	owledge on	drug	s and dos	es		
Objectives of the						harmaceutical	chemistry.
course						ctions of variou	
				-			he consequences
	of various		to Ki		npon	ance as well th	ne consequences
		U	n the	various a	nalve	is and techniqu	165
		0			•	structural activ	
Course Outline							ysical properties
Course Outline							dex- Definition,
	-						ecific & molar
							z polychromatic
		1					ation examples,
			-	-		-	int & Induced
		-		•			nation.Rheology
							n, Applications,
							natic, Relative,
							n system, non-
	- ·					•	Dilatent flow.
		•				-	Newtonian and
	-	tonian syste		Selection	01 1		i to the contain and
		Isotopic		ion ana	lysis	principle	andapplications
	Neutron	activatio		analysis:	-		vantages and
		s,Scintillati				± ·	ntroduction to
		maceuticals			of		types of
	-	maceuticals	-				diagnostics, as
	-			-			mical Properties
	-					•	igs (a) Partition
	U		•		-	ity, (d) degree	0
							Introduction to
							– Definition of
	Common			Regulatio			pharmacopoeias
		es, source				g nomenclatu	1 1
		ation of	5 0	0		•	a dosage form,
			ore fr				ict development
			-		-		very system –
		n of Con	-	-		-	Regulation and
	Demition		111011		it	III. Diug	

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	 control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of drugs products, need for a dosage form, classification of dosage forms. UNIT-IV:Development of new drugs: Introduction, procedure followed in drug design, theresearch for lead compounds, molecular modification of lead compounds. Structure-Activity Relationship (SAR): Factorseffecting bioactivity, resonance, inductive effect, isoterism, bioisosterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, ratetheory, induced-fit theory, 4.3Quantitative structure activity relationship(QSAR): Development of QSAR, drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionizationconstants, steric parameters, chelation parameters, redox potential, indicator-variables. UNIT-V:Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/Odevices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry – least square fit, solution to simultaneous equations, interpolation, extrapolation, data smoothing, numerical differentiation andintegrations. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC-CSIR / GATE / TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 Physical Chemistry- Bahl and Tuli. Text Book of Physical Pharmaceutics, IInd edition, Vallabh
1 CAL	PrakashanC.V.S. Subramanyam.
	3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R
	Chatwal, Himalaya Publishing house.
	4. Instrumental method of Analysis: Hubert H, Willard,7th edition.
	5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S.
	Chand & company Ltd.Pharmaceutical Chemistry by Dr. S.
Reference Books	Lakshmi, Sultanchand & Sons.1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
Kelerence Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.

	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi.
	3. Physical Pharmacy and Pharmaceutical Sciences by Martins,
	Patrick J. Sinko, Lippincott. William and Wilkins.
	4. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter,
	CBS Publisher Ltd.
	5. Ansels pharmaceutical Dosage forms and Drug Delivery System by
	Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.
Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5:To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

Level of Correlation between PSO's and CO'sCO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	NANO N	IATERIAL	S Al	ND NANC) TE	CHNOLOGY	
Course							
Paper No.	Elective 1	[
Category	Elective	Year	Ι	Credits	3	Course	P23CHE1B
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lał	o Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	owledge of	cryst	allograph	y an	d material scie	ence
Objectives of the	To unders	stand the con	ncept	t of nano n	nateri	als and nano te	echnology.
course	To unders	stand the var	rious	types of n	ano 1	naterials and th	neir properties.
	To unde	rstand the	app	olications	of s	synthetically	important nano
	materials.						_
	To correla	ate the chara	acteri	istics of va	rious	nano material	s synthesized by
	new techr	-					
	-					ly used new na	
Course Outline	UNIT-I:	Introducti					notechnologies,
	Introducti	on-role of	size,	classifica	tion-	0D, 1D, 2D,	3D. Synthesis-
	Bottom –	Up, Top–D	own,	consolida	tion	of Nano powd	lers. Features of
	nanostruc	tures, Back	groui	nd of nano	struc	tures. Techniq	ues of synthesis
	of nano:	materials,	Tool	s of the	e na	anoscience. A	Applications of
	nanomate	rials and tec	hnol	ogies.			
	UNIT-II:	Bonding an	nd st	ructure of	the	nanomaterials	, Predicting the
	Type of	Bonding	in	a Sub	stanc	e crystal st	ructure.Metallic
	nanoparti	cles, Surfa	aces	of Ma	terial	s, Nanoparti	cle Size and
	_					-	ds - inert gas
	-	•	•				olvothermal and
				-		-	anced, and low-
	-				-	lectrochemical	
	_						-
			-	-			ries relevant to al properties of
	nanomate		esion	-		•	properties of
		,					ides: silica, iron
		alumina - sy					
		:Electrical					d Resistivity,
							netic properties,
	electronic						of magnetic
	-						Ge, Si, GaAs,
							s p and n –type
				-		d anomalous,	-
	interpreta	tion of	chai	rge carr	ier	density. Ap	oplications of

	and photogalvanic cell. UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in different fields.Core-shell-nanoparticles,types,synthesis,andproperties. Nanocomposites-metal-,ceramic-andpolymer-matrixcomposites- applications. Characterization–SEM, TEM and AFM- principle instrumentation of applications.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	principle,instrumentationand applications. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Website and e-learning source	1. http://xrayweb.chem.ou.edu/notes/symmetry.html. 2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

SEMESTER-II

Title of the Course	ORGANIC CHEMISTRY-II											
Paper No.	Core IV											
Category	Core	Year Semester	ICredits5CourseP23CHT2IICodeCode									
Instructional	Lecture	Tutorial	Lab	Practice		Total						
hours per week	5	1	-			6						
Prerequisites	Basic knowl	Basic knowledge of organic chemistry										
Objectives of					benz	zenoid, noi	n-benzenoid					
the course	heterocyclic To understa reactions wit To understar To correlate	To understand the concept of aromaticity in benzenoid, non-benzenoid, heterocyclic and annulene compounds. To understand the mechanism involved in various types of organic reactions with evidences. To understand the applications of synthetically important reagents. To correlate the reactivity between aliphatic and aromatic compounds.										
		nthetic routes fo	-	-	_							
Course Outline	Definition-re	onformational a estricted rotati			and on-ca		e ms gle bonds-					
	conformation population of Waals attra conformers. Conformat mono and d analysis of c effect-α-halo effect.	n of ethane nal free energy of conformers-in active force, ional analysis o li-substituted cy cyclohexane and o cyclohexanone	y-conf influen intram f cycl clohe clohe l its d s-ano	formational ce of dipol colecular H cohexane systexane-flexible erivatives, c meric effect-	isoma e-dipa -bonc tems- e con ycloh · Deca	ers and a ole repulsi ling on stability an formers-co exanones- alins-octant	tropisomers on, van de stability o d isomers in nformationa alkyl ketone rule,-cottor					
	 UNIT-II Dynamic stereochemistry conformation and reactivity Conformation and reactivity in acyclic systems – stereo electronic and steric factors – simple examples illustrating E2 and cis eliminations, intramolecular rearrangements ,Winstein Elliel Equation, Steric assisted and steric hindered reaction. Simple reactions illustrating stereo and stereo-electronic factors – esterfication, oxidation, nucleophilic substitution at ring carbons and elimination reactions - reactions involving intramolecular rearrangements – formation and cleavage of epoxides and neighbouring group participation – reactions of enols and enolates. UNIT-III: Oxidation and Reduction Reactions: Dehydrogenation by quinones, selenium dioxides, mercuric acetate lead tetraacetate, permanganate, peroxides, peracids, osmium tetroxide, oxidation of 											

	 saturated hydrocarbons, alkyl groups, alcohols, halides and amines. Reduction of organic compounds with reagents based on LiAlH₄, NaBH₄, Raney Ni hydrazine, formic acid and dissolving metals. Clemmenson reaction, Wolf Kishner reduction, Birch Reduction. UNIT-IV: Reagents and Modern Synthetic Reactions: Use of the following reagents in organic synthesis and functional group transformation
	– Dicyclohexylcarbodiimide, 1,3 dithiane (reactive umpolung), trimethylsilyl iodide, tri-n-butyltin hydride, Woodward and Prevost hydroxylation, DDQ Wilkinson's Catalyst – Wittig reaction Lithium diisopropylamine (LDA), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃₋ .Suzuki coupling, Heck reaction.
	UNIT-V: . Asymmetric Synthesis Importance of asymmetric synthesis – problems with resolution methods – optical purity - enantiomeric excess – diastereomeric excess – chiral, substrate controlled, auxillary controlled, catalyst controlled and solvent controlled asymmetric synthesis, example for each case, synthesis of longifolene by EJ Corey method.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons.2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc.,1959. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers,2015. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic Chemistry, 7th edn., Pearson Education,2010.
Reference Books	 S. H. Pine, Organic Chemistry, 5thedn, McGraw Hill International Editionn,1987. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing

	House, Bombay,2000.					
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,					
	Rinehart and Winston Inc., 1959.					
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.					
	5. J. A. Joule and K. Mills, Heterocyclic Chemistry, 4 th ed., John-					
	Wiley,2010.					
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-					
e-learning	<u>chemistry/organic</u>					
source	2. https://www.organic-chemistry.org/					
Course Learning Outcomes (for Mapping with POs and PSOs)						
Students will be	able:					
CO1: To recall t	he basic principles of aromaticity of organic and heterocyclic compounds.					

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the Course	PHYSIC	AL CHEM	ISTI	RY-I			
Paper No.	Core V						
Category	Core	Year Semester	I II	Credits	5	Course Code	P23CHT24
Instructional	Lecture	Tutorial) Practice		Total	
hours per week	5	1	-			6	
Prerequisites	Basic cor	cepts of pl	vsica	al chemist	rv		
Objectives of the						namics and th	e composition of
course		olar quantiti			•		
	To unders	stand the cla	assica	l and stati	stica	l approach of	the functions
	To corre	late the th	neorie	es of read	ction	rates for t	he evaluation o
	thermody	namic para	meter	rs and stu	udy	the mechanisi	m and kinetics o
	reactions.						
	To gain	and apply	the	knowledg	ge o	on the conce	pts and laws o
	electroch	emistry.					
Course Outline	UNIT-I:						
		v				e Equilibrium	
	The seco	nd law of	therm	nodynamic	s –	Entropy – th	ermodynamics o
	systems of	of variable	comp	ositions -	- pa	rtial molar qu	antities and thei
	determina	ation – chen	nical	potential -	- Gi	bbs-Duhem ec	uation – Activity
	and Fuga	city- determ	ninati	on of fuga	city,	Nernst equat	ion, Third law o
	thermody	namics, exc	ceptio	ons and ap	plic	ations. Chemi	cal equilibrium
	-		-		-		nt-Hoff equation
	_	-		-		-	thodology. Phase
	_			-	-		CH ₃ COOH, H ₂ C
	-	l ₃ system.	ion t		mp	Shent System-	
			1 41		•	T 1 1	
				-			on of statistica
			-		•	mic and mathe	& Bose-Einstei
	1						of translational
							atomic, diatomic
				-			rtition functions
			•			-	
	calculation of equilibrium constants. Specific Heat of solids-Einstein and Debye models.						
		I: Kinetics	of Re	actions			
					ppo	sing, consecu	tive and paralle
						-	kinetics of H ₂ -Cl
		•					n stationary chain
				-			nwald –Winstein
	equation	on react	ion	rates. Co	once	pt of Linea	ar Free Energy
		-				ett equation	-
	substituer	nt and react	ion ra	ate constar	nts -	Taft equation	- thermodynamie

	implications of LFER. Experimental methods for the study of fast reaction-flow method-relaxation methods.
	 UNIT-IV: Electrochemistry – I Mean ion activity and activity coefficient of electrolytes in solution – Ion association - Ionic strength – Debye-Huckel theory – Debye-Huckel limiting law - its validity and limitations – Strong and weak electrolytes – Debye theory of electrolytic conductance – Debye – Huckel – Onsager equation - Verification and limitations - Electrochemical cells and applications of standard potentials. Batteries- Primary and secondary fuel cells – Corrosion and corrosion inhibition. UNIT-V: Electrochemistry – II The electrical double layer – Polarizable and non-polarizable interfaces – Structure of electrical double layer – Electro capillary and double layer capacity measurements – Double layer models –
Extended Professional Component (is a part of internal component only, Not to be included in the external	 Helmholtz, Guoy-Chapman and Stern models. Electro kinetic phenomena: Zeta potential – Electrophoresis Electro osmosis, sedimentation potential and streaming potential, Kinetics of electrode processes – Current-potential curve – Butler- Volmer relation and its approximations – Tafel equation – Charge transfer resistance – Nernst equation from Butler-Volmer equation – Multistep processes – Symmetry factor and transfer coefficient – Electro catalysis-Hydrogen evolution reaction as a case study. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
examination question paper) Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course Recommended Text	 Competency, Professional Communication and Transferable skills. 1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. 2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A.BenjaminPublishers, California, 1972. 3. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. 4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. 5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011.

Reference Books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Dava 1006
	Press,1996. 5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and	1. https://nptel.ac.in/courses/104/103/104103112/
e-learning source	2. <u>https://bit.ly/3tL3GdN</u>

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5:To compare the theories of reactions rates and fast reactions.

PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong,	2 – Medium,	1 – Low
-------------	-------------	---------

Title of the	INORGA	NIC CHE	MIS	FRY PRA	CTI	CAL					
Course											
Paper No.	Core VI										
Category	Core	Year	Ι	Credits	4	Course	P23CHP22				
		Semester	Π			Code					
Instructional	Lecture Tutorial Lab Practice Total										
hours per week	-	1	5			6					
Prerequisites	Basic pri	nciples of g	ravi	metric and	d qua	litative ana	lysis				
Objectives of the	To under	stand and er	nhano	ce the visu	ial ob	servation as	an analytical tool				
course		antitative es									
	To recall	the principle	e and	theory in	prepa	aring standar	d solutions.				
	To train t	he students	for i	mproving	their	skill in estir	nating the amount				
	of ion acc	curately pre	esent	in the solu	ition						
	To estimate	ate metal ior	ns, pr	esent in th	ne giv	en solution a	accurately without				
	using inst	ruments.									
				-			nixture accurately.				
Course Outli		•				•	f a mixture of four				
ne		0	o coi	mmon cati	ons a	and two rare	cations. Cations to				
	be tested.										
	Group-I	: W, T									
	-	: Se, T									
	Group-II			r, Zr, V, Cr	r, Fe,	Ti and U.					
	Group-IV			o and Mn.							
	Group-V										
	Group-V				1	D					
				t metal co	omple	exes: Prepar	ation of inorganic				
	-	es: (any two)			(Daul	nhata					
		ation of trist									
		ation of pota ation of tetra									
		ation of Reir		I I ,	11 <i>)</i> Su	ipilate					
	-				r(T) el	hloridedihydi	rate				
	-					diaquachron					
	-	ation of sodi				-	iiiii)				
		ation of hexa									
	n. i repara	ation of nexa	umo	urcaicau(I	<i>i)</i> IIIII	aic					

		UNIT-III: Quantitative Analysis									
		a) EDTA titrations: Zn(II), Mg(II), Cu(II), and Ni(II)									
		b) Redox titrations: Fe(II) vs Ce (IV), Fe(II) vs dichromate NO2 ⁻ vs Ce (IV)									
0		c) Spectrophotometric methods of analysis Fe(II), Cu(II) (demonstration only)									
	Extended Professional Component (is a part of internal	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)									
	component only, Not to be included in the external examination question paper)										
	Skills acquired	Knowledge, Problem solving, Analytical ability, Professional									
	from this course Recommended Text	 Competency, Professional Communication and Transferable skills. 1. A. JeyaRajendran, Microanalytical Techniques in Chemistry: Inorganic Qualitative Analysis, United global publishers, 2021. 2. V. V. Ramanujam, <i>Inorganic Semimicro Qualitative Analysis</i>; 3rded., The National Publishing Company, Chennai, 1974. 3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London. 									
	Reference Books	 G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i>; Chapman Hall, 1965. W. G. Palmer, Experimental <i>Inorganic Chemistry</i>; Cambridge University Press, 1954. 									
	Students will be ab CO1: To identify t CO2: To apply the and basic radicals. CO3: To acquire t spot tests.	Outcomes (for Mapping with POs and PSOs) ble: the anions and cations present in a mixture of salts. the principles of semi micro qualitative analysis to categorize acid radicals the qualitative analytical skills by selecting suitable confirmatory tests and the appropriate chemical reagents for the detection of anions and cations.									
		e coordination compounds in good quality. Mapping (Course Articulation Matrix)									
		e coordination compounds in good quality. Mapping (Course Articulation Matrix)									

Page 29

CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	М	S	S	М	S	Μ	S	S

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3- Strong, 2- Medium, 1- Low

Title of the Course	MEDICINAL CHEMISTRY										
Paper No.	Elective III										
Category	Elective	Year	Ι	Credits	3	Course Code	P23CHE2A				
		Semester	II								
Instructional	Lecture Tutorial Lab Practice Total										
hours per	3	1	-			4					
week											
Prerequisites	Basic knowle	edge of medicina	al chei	nistry							
Objectives of	To study the	chemistry behind	the d	evelopment o	of phar	maceutical materi	als.				
the course	To gain know	ledge on mechai	nism a	nd action of	drugs.						
	To understand	d the need of ant	ibiotic	s and usage of	of drug	S.					
	To familiarize	e with the mode	of acti	on of diabeti	c agent	ts and treatment o	f diabetes.				
	To identify an	nd apply the action	on of v	various antibi	otics.						
Course	UNIT-I: Intr	oduction to rec	eptors	: Introductio	on, targ	ets, Agonist, anta	gonist, partial				
Outline	agonist. Rece	eptors, Receptor	types	, Theories o	of Drug	g – receptor inter	raction, Drug				
	synergism, D	rug resistance, pl	nysico	chemical fac	tors in	fluencing drug act	ion.				
	UNIT-II: AI	ntibiotics: Intro	duction	n, Targets o	f antib	piotics action, cla	ssification of				
	·										

Extended Professional Component (is a part of internal component only, Not to be included in the	antibiotics, enzyme-based mechanism of action, SAR of penicllins and tetracyclins, clinical application of penicillins, cephalosporin. Current trends in antibiotic therapy. UNIT-III: Antihypertensive agents and diuretics: Classification of cardiovascular agents, introduction to hypertension, etiology, types, classification of antihypertensive agents, classification and mechanism of action of diuretics, Furosemide, Hydrochlorothiazide, Amiloride. Unit -IV: Vitamins: Classification of vitamins, biochemical function of vitamins, Vitamins -A, B1, B2, C, E and H-Sources and Deficiency diseases, Recommended dietary allowance(RDA), Structure elucidation and function. UNIT-V: Analgesics, Antipyretics and Anti-inflammatory Drugs: Introduction, Mechanism of inflammation, classification and mechanism of action and paracetamol, Ibuprofen, Diclofenac, naproxen, indomethacin, phenylbutazone and meperidine. Medicinal Chemistry of Antidiabetic Agents Introduction, Types of diabetics, Drugs used for the treatment, chemical classification, Mechanism of action, Treatment of diabetic mellitus. Chemistry of insulin, sulfonyl urea. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
external examination question paper) Skills acquired from this	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	
Reference Books	 O.Lekoy, Natural and Synthetic Organic Medicinal compounds, Ealerni, 1976. S.S.Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, NewDelhi,1993,New edn. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical

Page 31

	Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011,12 th edn.										
	4. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.										
	5. S.Ramakrishnan, K.G. Prasannan and R.Rajan, Text book of Medical										
	Biochemistry, Hyderabad: Orient Longman.3 rd edition,2001.										
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/										
e-learning	2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html										
source	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908										
Course Learnin	ng Outcomes (for Mapping with POs and PSOs)										
Students will be	able to:										
CO1: Predict a	drugs properties based on its structure.										
CO2: Describe	the factors that affect its absorption, distribution, metabolism, and excretion, and hence										
the consideratio	ns to be made in drug design.										
CO3: Explain th	ne relationship between drug's chemical structure and its therapeutic properties.										

CO4: Explain different theories of drug actions at molecular level.

CO5: Identify different targets for the development of new drugs for the treatment of infectious and GIT.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	Μ	S	S

Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	MATER	IAL SCIEN	CE				
Course							
Paper No.	Elective	[V					
Category	Elective	Year	Ι	Credits	3	Course	P23CHE2B
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lał	o Practice		Total	
hours per week	3	1	-			4	
Prerequisites	Basic kn	owledge of s	solid [.]	-state cher	mistı	y	
Objectives of the	To unde	rstand the	crys	tal struct	ure,	growth meth	hods and X-ray
course	scattering						
							es of crystals.
			is of	semicond	ucto	rs, supercond	uctivity materials
	and magn						
	-	•					of nanomaterials.
			mpor	tance of n	nater	ials used for 1	renewable energy
	conversio						
Course Outline		• 0	-		•		l Miller indices -
	• •			-			pace groups - X-
	-		-			-	al lattice and its
		0		•	U 1	• •	structure-powder
	-	• •	-		ctron	charge densi	ty maps, neutron
		n-method ar		-		uplastion any	ilibrium stability
		• •				-	high temperature,
							thods-nucleation-
	-	·		0	•	•	tal–Low and high
	-	•					Melt growth –
	-		-			-	chnique, physical
	-						rization factor -
		nd secondar		-	20101	ni unu poiu	
			•		Opt	ical studies -	Electromagnetic
							e – transparency,
	-						oto-, electro-, and
		•	-	• •		-	nd polymer LED
							tion - electronic,
							ct of temperature.
	dielectric	constant,	diele	ctric loss.	Тy	pes of dielec	ctric breakdown-
	intrinsic,	thermal, dis	charg	ge, electroo	chem	ical and defec	t breakdown.
	UNIT-IV	: Special	Mate	erials: Su	perce	onductivity:	Meissner effect,
							Type I and II
	supercond	luctors, BC	S the	ory-Coope	er pai	ir, Application	ns. Soft and hard
	-		•	•			ns. Magneto and
	0 0						gnetic materials-
	application	ns, magnet	ic pa	rameters	for r	ecording appl	lications. Ferro-,

Text	 S. Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
-	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Extended Professional Component (is a part of internal	UNIT-V: Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer, bulk hetero junction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nano materials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyro electric materials, nano materials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 S S S **CO 1** S S S S S Μ Μ S S S S S S S S **CO 2** Μ Μ S S S S S S S S **CO 3** Μ Μ **CO 4** S S S S S S S S Μ Μ **CO 5** Μ S Μ S S Μ S Μ S S

Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Course Paper No.			VER	YDAY LI	IFE		
Paper No.							
	NME					1	I
Category	NME	Year Semester	I II	Credits	2	Course Code	P23CHS1A
Instructional	Lecture	Tutorial		Practice		Total	
hours per week	3	1	-	Tractice		4	
Prerequisites	-	wledge in	Evera	day Che	mist	•	
Objectives of the course	Basic knowledge in Everyday Chemistry1.To enable students understand and appreciate the chemistry behindDairy Industry2. To provide knowledge on the various chemicals in food and foodadulteration3. To inculcate the basic knowledge of minerals, cosmetics andcleansing agents.4. To enable students gain basic knowledge on petrochemicals,polymers, dyes, paints and building materials						
	carbohyd color, oc Factors homogen	rates, vitam lour, acidit affecting	iins a y, sp the	nd miner ecific gra composit	als. avity ion	Physical pro , viscosity a of milk	k lipids, proteins perties of milk - and conductivity – pasteurization ution of milk

	Perfumes -General
	formulations –possible hazards of cosmetics use
	Cleansing agents:
	Soaps and detergents, cleansing action, bleaching and stain removal
	UNIT-IV:. Chemistry and Industry-I
	Chemicals in food production:
	Fertilizers such as urea, NPK and Super phosphates -uses and hazards
	Pesticides
	-definition and examples Fertilizers from natural sources
	Petrochemicals:
	Generations and composition of petrochemicals, Rocket propellants Polymers and Plastics:
	Polythene, polyester, PVC, bakelite, resins; Teflon and nylon -their
	applications
	Biodegradable polymers and Biopolymers
	UNIT-V: Chemistry and Industry-II
	Dyes, Paints and Pigments:
	Composition, Classification and Applications; Process of dying.
	Building Materials:
	Cement and its manufacture, Mortar, Concrete and R.C.C Manufacture
	of glass, Ceramics
	Rubber: Natural Rubber-Synthetic rubbers-Vulcanization -definition
	and its applications
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge.
from this course	
Recommended	1. Carl H Snyder, The Extraordinary Chemistry of Everyday Things 4th edition 2002
Text	Things, 4th edition 2003
	2. Alfred Vivian, Every day Chemistry, Hard press Publishing,
	3. John Emsley Chemistry at Home: Exploring the Ingredients in

Page 37

	Everyday Products, Royal Society of Chemistry; Illustrated edition, 2015
Reference Books	 Kirpal Singh, Chemistry in Daily Life: PHI, 3rd Ed., 2010 H-D. Belitz, Werner Grosch, Peter Schieberle, Food Chemistry, Springer; 4th revised and extended Ed., 2009
Website and e-learning source	
Students will be able CO1: Appreciate the CO2: Comprehend CO3: Realize the ro	Dutcomes (for Mapping with POs and PSOs) e: e central role of chemistry in our society (K5) the role of chemicals in Food & Nutrition (K1) le of chemistry in food production.(K4) ndanalyze the role ofchemistry in petrochemical, polymer, and cosmetic

Mapping	(Course	Articulation	Matrix)
	(Course	1 II ticulation	111411111)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	Μ	S	S

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3-Strong, 2-Medium, 1-Low

Title of the Course	AGRICU	ULTURAL	CHE	EMISTRY			
Paper No.	NME						
Category	NME	Year	Ι	Credits	2	Course	P23CHS1B
		Semester	II			Code	
Instructional	Lecture	Tutorial	La	b Practice	•	Total	
hours per week	3	1	-			4	
Prerequisites	Basic kno	wledge in	Agri	cultural C	'hem	istry	
Objectives of the	1.To enab	le students	unde	erstand the	chem	nical composit	ion of soil
course	2.To prov	ide knowled	dge o	on the chen	nistry	v behind fertili	zers
	3.To ena	ble student	ts ki	now and	unde	erstand the c	hemistry behind
	pesticides						
	4. To ena	able student	s an	alyze and	find	a suitable me	thod to promote
	agricultur	e.					
Course Outline	UNIT I	• /					
	Soil Cher	v		n of soil.		is and insure	uio constituento
		· ·			0	0	nic constituents
		ailability of	0	- ·		1	n of cations and
	amons. av	anaonity 0	I SOII	numents	lo pia	lints	
	UNIT-II						
	Fertilizer	' C					
		-	ertili	zer and m	aniire	e – Superiority	y of manure over
						· ·	Role of humus
							rea, DAP, Super
							nal addition o
		to obtain es				inzers, optin	
			,a	ited yrerus.			
	UNIT-III: Pesticides, Fungicides, Herbicides And Weedicides						
	Pesticides: Classification on the basis of mode of action, types of pests and Chemical nature with examples – safety measures while using pesticides. 2.4 Fungicides, Herbicides, Acaricides, Rodenticides,						

UNIT-IV: Plant Growth Regulators

3-Indole acetic acid, naphthalene acetic acid, Ethepon (2-chloroethyl phosphoric acid): Alar (succinin acid-2, 2-dimethyhydrzine :) their function. Plant hormones: Gibberlin, Cyclocel, Phosphon, dwarfing compound (CCC: 2-Chlorethyltrimethyl ammonium chloride). Defoliants

Repellants, Fumigants, Defoliants (Definitions and Examples).

	Unit-V Insecticides Basic and newer formulations of insecticides, contact insecticides, fumigants, manufacture and uses of insecticides. DDT, BHC, pyrethrin mention of aldrin, dieldrin, endrin and pentachlorophenol Handling hazards of insecticides – Symptoms of poisoning, first aid and antidotes
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge.
Recommended Text	 Joseph Scudder Chamberlain Organic Agricultural Chemistry (the Chemistry of Plants and Animals); A Textbook of General Agricultural Chemistry or Elementary Bio-Chemistry for Use in Colleges, Andesite Press, 2015 H. Parameshwar Hegde, Textbook of Agro-Chemistry, Discovery Publishing Pvt. Ltd, 2009
Reference Books	 G.T. Austin: Shreve's Chemical Process Industries, 5th edition, Mc-Graw-Hill, 1984 B.A. Yagodin (Ed). Agricultural Chemistry, 2 Volumes, Mir Publishers (Moscow), 1976
Website and e-learning source	
Course Learning C Students will: CO1: Have Acquire CO2: Be able to illu CO3: Be able to app	Dutcomes (for Mapping with POs and PSOs) ed knowledge on the chemical composition of soil (K1) astrate the chemistry behind fertilizers and pesticides (K4) preciate the chemistry behind agricultural methods (K5) d and suggest suitable methods to promote agriculture.(K6)

M.Sc. Chemistry Syllabus 2023

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Mother Teresa Women's University, Kodaikanal – 624 101

Page 41